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Abstract

In this paper some possible directions are sketched along which formal seman-
tics can be applied to practical problems. The most promising application areas are
language implementation, language design, and program design. It is argued that
in order to exploit these possibilities, a closer cooperation between semanticists
and practitioners in the above areas is needed.

1 Introduction

The study of formal semantics of programming languages is often considered to be
a field of little practical relevance. This point of view is taken by many people that
are not familiar with these techniques. Sometimes they are scared off by the first
mathematical formula in the text. Others read patiently through all the definitions
and even come to understand them, but finally reach the conclusion that the semantics
of a real program is a far too complex mathematical object for anyone to understand,
and that therefore the whole field cannot lead to any useful result.

Even sadder is the viewpoint of many researchers in the field itself. Many of them
have little or no interest for the practical relevance of what they are doing and are
completely satisfied with published papers as the sole outcome of their research. Others
have a wrong impression of what ‘practical relevance’ means because they have little or
no contact with the people that actually build computer systems and for whom their
results could be valuable.

In this paper, I shall try to demonstrate that formal semantic techniques can be
useful in many fields of computer science. We shall see that it is not easy to apply these
techniques, and that the only possibility is for semanticists and ‘practical’ people to
work closely together, so that each gets a better understanding of the other’s problems
and capabilities.

2 Semantic formalisms

There are several broad categories in which formal semantic techniques can be divided:
operational, denotational, and axiomatic semantics (for a more extensive overview, see
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{Pag81]). Sometimes it is said that operational semantics is useful for the language im-
plementor, denotational semantics for the language designer, and axiomatic semantics
for the one who writes programs in the language. We shall see below that this is not
the complete truth.

Broadly speaking, one can say that operational semantics involves some kind of
abstract machine and it describes the meaning of the program in terms of the actions
that this machine performs. The nature of this abstract machine differs considerably
between the several operational formalisms. In VDL [Weg72|, the machine and the
instructions it executes both have the structure of a tree, where labels can be attached
to nodes and edges. The operational semantics presented in {Bak80] uses states, which
are functions from variables to values, and state transformations, functions from states
to states, which describe the execution of a complete statement. The sequences of states
resulting in this way come very close to what in other contexts is called denotational
semantics.

A very popular approach is the use of transition systems in the ‘Structured Opera-
tional Semantics’ (SOS) style of [HP79,Plo81,Plo83]. Here the meaning of a program
is expressed as a sequence of transitions between configurations. A configuration typ-
ically consists of a state, mapping variables to values, plus that part of the program
that is still to be executed. A transition relation describes the collection of all possible
transitions from one configuration to another. Typically this relation is defined induc-
tively by using axioms and rules. Because of the fact that the program to be executed
is contained in the configurations, the axioms and rules defining the transition relation
can be closely connected to the syntactic structure of the programming language.

The essence of denotational semantics lies in the principle of compositionality: The
semantics takes the form of a function that assigns a meaning, an element of some
mathematical domain, to each individual language construct. The principle of compo-
sitionality says that this function should be defined in such a way that the meaning of
a composite construct does not depend on the form of the constituent constructs, but
only on their meaning.

There are several kinds of mathematical domains being used as the ranges of these
meaning functions. In most instances some kind of limit construction is necessary to
describe infinite behaviour and the structure of the domain should enable such a limit
construction. Most forms of denotational semantics use some order-theoretic structure
and among these complete partial orders (CPOs, see. e.g., {Bak80]) and several kinds of
lattices {Sco76] are the most popular. A quite different approach is the use of complete
metric spaces [BZ82].

Finally, instead of directly assigning a meaning to a program, aziomatic semantics
gives a description of the constructs in a programming language by providing axioms
that are satisfied by these constructs. The most popular formalism to express these
axioms is Hoare logic [Hoa69]. Here a program or statement is described by two logical
assertions: a precondition, describing the state of the system before executing the
program, and a postcondition, describing the state after execution. Using such an
axiomatic description of the programming language, it is possible, at least in principle,
to prove the correctness of a program with respect to a specification.



3 Language implementation

Intuitively the most obvious relationship between formal semantics and practical appli-
cations is concerned with the implementation of programming languages. One would
hope that having taken all the trouble to give a formal semantics to a programming
language, it would be possible to arrive quickly at an implementation for this language.
However, things are not so easy as that.

The most obvious candidate for transformation into implementations is operational
semantics: this type of semantics already takes the form of describing the actions
performed by an abstract machine. Unfortunately, it is not so easy to relate the abstract
machine model used by most versions of operational semantics to a concrete machine.
Concrete machine architectures are always designed with the objective to implement
them cheaply and efficiently in hardware. Moreover, their finiteness imposes many
limits on their power, which of course do not apply to abstract machines.

At the moment, I am not aware of any attempt to implement the tree-like structures
of the VDL abstract machines on ordinary hardware. For SOS-style transition systems
|[HP79,P1081,Plo83|, however, there is an interesting possibility: It is relatively easy
to write the axioms and rules that describe the transition relation in the form of
Horn clauses. In this way they could in principle be interpreted by a system such as
Prolog. There are, of course, a few problems with this approach. The most obvious one
pertains to the performance of this implementation, which of course can never be very
good, but it may be sufficient for a first prototype implementation of a new language.
The second one is more fundamental: the Prolog system itself is not complete, in the
sense of being able to find all the solutions of the given goal to which the axioms
give rise. Therefore the order and the form in which the axioms are written are
very important for the execution of the program, and this effectively prohibits a fully
automatic implementation along these lines. There exist complete theorem provers
that are able to deal with Horn clauses, but these are orders of magnitude slower than
the best Prolog implementations and they use much more memory.

The last problem is common to all semantics-based implementation techniques:
how to deal with nondeterminism? A transition system may allow several different
transitions from a given configuration. In principle, a single program may give rise to
many possible transition sequences among which one should be chosen. Sometimes the
semantics imposes requirements on the whole transition sequence, for example that it
should be fair, or that it should not lead to a dead end. It is clear that this kind of extra
requirements is extremely difficult to deal with in the above approach. Prolog traverses
its search space in a depth-first way, which is not fair in most cases. Backtracking out
of ‘wrong’ transition sequences is only possible if they are finite. The best solution to
this problem would be if the original transition system were formulated in such a way
that all its resulting transition sequences are acceptable.

Despite all appearances, denotational semantics may provide at least as good a basis
for the automatic generation of language implementations as operational semantics.
This may not be the case for the direct form of denotational semantics as described in
[Bak80, chapters 1-9] and [Sto77, chapters 1-10], because the functions from states to
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states resulting from these definitions are very cumbersome to compute. However, for
semantic definitions using contsinuations opportunities appear to be better. The tech-
nique of continuations can best be summarized by saying that in defining the meaning
of a statement or expression one considers the meaning of the following statements and
expressions as a parameter. The output of the semantic function is then the meaning
of the statement/expression under consideration plus all the following ones. This com-~
bined meaning need not be a function from states to states; it can equally well be a
sequence of items to be written to the output file, for instance. For a nice introduction
to continuation semantics, see {Gor79].

Once an abstract structure for the syntactic constructs in a language has been
fixed (this could form the output of a parser}, it is very easy to write the semantic
definitions in a functional programming language (e.g., Miranda {Tur85]). If moreover
the semantics makes clever use of continuations and the functional language is evaluated
in a ‘lazy’ way, then the expression giving the semantics of a program can be executed
directly, giving the output of the program as scon as it has been computed. This
even works for nonterminating programs. I have done this experiment a few years
ago with the continuation semantics for the language SMALL in [Gor79|, using an
interpreted SASL implementation [Tur79). The resulting performance was acceptable
for a prototype implementation and the recent advances in the implementation of
functional languages [PJ87] would probably lead to an improvement by several orders
of magnitude. Other approaches roughly along this line have been done before {Mos76|.

Nevertheless, the performance that can be achieved by directly executing tradi-
tional denotational descriptions in this way is still much less than the performance
exhibited by ordinary hand-written compilers. The most important reason for this is
that in the abovementioned approach, operations that can be efficiently performed by
computer hardware, such as reading or changing the contents of storage cells, are first
mapped to relatively complicated mathematical notions (such as a state: a function
from variable names to values), which must then be mapped back again to a concrete
computer architecture. This detour can be avoided by splitting the semantic descrip-
tion in several levels. The lowest level provides those basic operations provided by the
underlying architecture. It should comprise both a precise mathematical description
and a direct translation to machine code. The higher levels can now make use of these
basic operations. In this way the higher level description can be shorter, easier to
understand, and easier to translate into an efficient implementation. This approach is
being explored at several places [MW86b,LP87], with a resulting performance compa-
rable with commercial, hand-written implementations.

Automatic generation of implementations is not the only way in which formal semantics
can help in language implementation. Also for hand-crafted implementations it is often
very helpful to relate them to a formally defined semantics. Here the basic problem is
ensuring the correctness of the implementation. A prerequisite for the formal approach
is, of course, the existence of some formal semantic description of the programming
language (see section 4).

To my knowledge, no complete implementation of a realistic programming lan-
guage has yet been verified completely formally. But less ambitious goal are certainly
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reachable. Among others, a formal semantic model can be used to justify a certain
implementation or optimization technique. For example, in [Vaa86]| it has been shown
that in the implementation of a parallel object-oriented language, the use of message
queues leads to a correct implementation with respect to the semantics, which imposes
certain fairness requirements on the execution of a program. Moreover, it is shown
that certain built-in data types, such as integers, that are conceptually modelled in
the language as full-fledged objects, can in fact be implemented in the traditional way
without any harm to the semantics. More sophisticated optimizations form the subject
of current research. For another example, we refer to the techniques used for strictness
analysis in functional programming languages, which are justified by a formal semantic
study using abstract interpretation [HBPJ88|.

4 Language design

Another activity where formal semantic methods can be applied fruitfully is the de-
sign of programming languages. The main purpose here is to provide a formalism in
which the outcome of this language design process can be represented. Unfortunately,
most descriptions of programming languages are informal, using natural language (e.g.,
[ANS83,BSI82]. It turns out that, whatever care is taken to make such a description
precise and unambiguous, there always remain some points that are open for several
different interpretations [Spe82,WSH77]. If we want to describe a certain aspect of
a programming language precisely, without any possibility for misinterpretations, the
only option is giving a formal description.

For describing the syntax of the language, the Backus-Naur form (BNF) has been in
common use for many years, sometimes supplemented by much less popular formalisms,
such as attribute grammars or two-level grammars, to capture the non-context-free
aspects of the syntax. All these formalisms do is defining what is a legal program in
the language and what is not; they do not tell us what a program means.

Complete formal semantic descriptions of commonly used programming languages
are very rare (but see, e.g., [AH82,MW86a]). It is certainly not easy to give a formal
description, be it operational, denotational, axiomatic, or otherwise, of programming
languages like Pascal, C, or Ada. Sometimes it is said that the reason for this is that
the formalisms for specifying the semantics of a language are not sufficiently developed.
This is only partly true. Another reason, at least equally important, is that many of
the languages that are currently in use have been designed by language implementors,
with a clear view of the implementation of the language in mind, but with far less
attention for an independent description of the exact meaning of programs. Some
language designers even think that they have sufficiently defined the language when
they have constructed one implementation for it.

The lack of appreciation of formal semantic techniques in circles of language de-
signers is even more unfortunate because these techniques can do much more than just
provide an unambiguous notation for expressing the meaning of programs. Trying to
give a formal semantics for a language is a very good way of detecting weak points in
the language design itself. ‘Insecurities’ as mentioned in papers like [Spe82,WSH77|
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are pinpointed very quickly as soon as one tries to describe the meaning of programs
in a formal way. At this point it would be possible to give a long range of examples of
language design errors that could have been avoided. Of course, the presence of such
problems can be demonstrated effectively by giving suitable example programs, but
their absence can only be proved by a formal semantics.

The worst form of language design errors are the completely unintentional ones,
where the language behaves in a way that is not expected and even less desired by its
designer. For example, the Eiffel programming language was claimed to have a com-
pletely safe static type checking mechanism [Mey87], but closer analysis shows that this
is not true {Coo89]. this kind of errors can be detected by defining a formal semantics
for the language and rigorously proving the desired property. Sometimes it suffices to
construct a simplified model, which concentrates on the particular aspect under con-
cern (in the case of Eiffel’s type system, the analysis in [Car88] clearly indicates some
of the problems and possible solutions).

Another kind of errors is the result of conscious decisions by the language designer,
where these decisions are nevertheless undesirable because they harm the readability,
writability, or implementability of the language. It can be said that operational seman-
tics, denotational semantics, and axiomatic semantics, in this order, are increasingly
sensitive instruments for detecting this kind of problems in language design. A good
rule of thumb says that there is such a problem whenever the description of a lan-
guage feature that is considered to be unessential requires a special adaptation of the
overall semantic model used to describe the language. For example, in a language like
Pascal, the addition of a goto statement requires a substantial adaptation of the de-
notational description (see, e.g., {Bak80, chapter 10]). Another common phenomenon
is the presence, in a language that is meant to be deterministic, of ‘unspecified’ be-
haviour in certain circumstances. A denotational description of such a language would
have to be adapted to some form of nondeterminism, which indicates that there is a
problem. In practice, such unspecified behaviour can form an important obstacle in
porting programs from one implementation to another.

While for many programming languages the goal of a clean denotational semantics
has not been reached (in many cases it has not even be considered!), the actual goal
should be a satisfactory aziomatic semantics, which is even more difficult to attain. As
we shall in the next section, the usability of a programming language for the systematic
construction of reliable programs will depend increasingly on the possibility of applying
formal techniques during program design, and for this a good formal proof system for
the language is a necessary prerequisite.

5 Program design

Finally, an important area where formal semantic techniques might be applied is in
the construction of programs. It is often said that formal semantics, in particular
of the operational or denotational kind, is useless because the meaning of a realistic
program is such a complex mathematical object that nobody can understand it. The
[atter statement is certainly true in most cases, but nevertheless the conclusion is not
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justified.

A formal definition of a programming language, including both syntax and se-
mantics, could be a concise and unambiguous reference document that can answer all
questions about the language, in the same way as a BNF description is a generally
accepted and appreciated form of describing the context-free syntax of a language.
The question is whether this document is readable by a programmer without several
years of studying complicated mathematics. For many forms of denotational semantics
this is indeed a problem, but not so severe as one would think: Often the ‘complicated
mathematics’ is only needed to justify the definitions, e.g., by demonstrating that a
certain equation indeed has a unique (or otherwise distinguished) solution. In reading
the semantics it is mostly possible to ignore these mathematical issues completely (as is
demonstrated, for example, in [Gor79]). However, it must be admitted that even then
denotational descriptions of programming languages are relatively hard to understand.

This is not necessarily the case for other forms of formal semantics, however. For
example, the SOS style of operational semantics [HP79,Plo81,Plo83] employs a set of
axioms and rules for defining the set of possible transitions between configurations.
Broadly speaking, an axiom describes the basic functionality of a single kind of state-
ment or expression, whereas a rule describes in which way the constituents of a com-
posite construct are evaluated. Because of the strong connection with the syntactic
structure and the fact that the mathematics involved is usually not very complicated,
this form of semantics leads to descriptions that are very easy to read, even for non-
specialists. For example, the operational semantics for the language POOL [ABKR86]
turned out to be relatively easy to understand to prospective programmer and imple-
mentors of the language.

The form of semantics that is directed most specifically towards the programmer,
axiomatic semantics, has not yet become very successful, unfortunately. The reason
for this is probably that it is even more difficult to give a clear axiomatic semantics
to a language that was not designed with this in mind, than to provide it with a
denotational sernantics. As most commonly used languages do not even lend themselves
to a reasonable denotational semantics, a complete axiomatic semantics is completely
out of the question. For some realistic programming languages an attempt has been
made to describe them axiomatically, but either the correctness and completeness of
the description was am open question [LGH*78] or only a part of the language was
described [HW73]. (For the programming language POOL an axiomatic description
has been given [Boe89], but it must be admitted that this is not easy to read for an
average programmer.)

Nevertheless, formal techniques are playing an increasingly important role in the
design of software systems, especially in situations where the reliability of the soft-
ware is vital. Automatic support for many of the manipulations of the formal objects
involved is gradually becoming available. It is clear that at the basis of these for-
mal techniques there should be a formal axiomatic description of the programming
language, or in other words, a formal proof system. It is not absolutely necessary
that this proof system is complete, in the sense that it can prove all correct assertions
about any program, but it should, of course, deal with all aspects of the programming
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language, and it absolutely must be sound, which means that everything that can be
proved in the proof system is actually true.

In the mean time, even if a complete axiomatic semantics of the programming
language in use is not available, a certain knowledge of the techniques of formal program
verification can give the programmer excellent guidelines in the design of his program.
Reasoning quasi-formally in terms of assertions describing the state at certain points
of the program can provide the support necessary to get subtle pieces of code correct.

6 Conclusions

We have seen that formal semantic techniques can be usefully applied in language im-
plementation, language design, and program design. It turned out that the traditional
opinion of operational semantics being mostly useful for language implementors, deno-
tational semantics for language designers, and axiomatic semantics for programmers,
does no longer correctly represent the state of affairs: Denotational semantics provides
a good starting point for automatic language implementations, SOS-style operational
semantics can provide the programmer with a concise and accurate description of
what the language constructs do, and a clean axiomatic description should be one of
the foremost goals in language design.

There are many opportunities for applying formal semantics, but it is clear that in
order to use them, much more cooperation is needed between researchers in the field
of semantics and the people active in the areas of language implementation, language
design, and programming. As long as semantics is being considered as a purely aca-
demic discipline with no relevance to the real world, it will be just that, and it takes
more than just proclaiming the practical importance of semantics in order to change
this situation.
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